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Wykrywanie złożonych błędów przekładni na podstawie 
synchronicznego próbkowania wtórnego oraz 

adaptacyjnej metody wariacyjnej dekompozycji modalnej
Compound fault detection of gearboxes is an ambitious matter considering its interconnection and complication. An innovative 
means for compound fault detection based on time synchronous resample (TSR) and adaptive variational mode decomposition 
(AVMD) is put forward in this work. TSR used in the method can enhance fault signals of synchronous shaft gears by eliminating 
signal components independent of synchronous shaft. Therefore, the TSR is used to separate the synchronous shaft signal cor-
responding to the gear fault from the raw compound fault signal. Then a series of mode components are obtained by decomposing 
the synchronous shaft signals of all faults by AVMD. The variational mode decomposition (VMD) can overcome the mode alias-
ing problem of empirical mode decomposition (EMD), but the decomposition effect of VMD is affected by its parameter setting. 
Thus, the paper proposes an AVMD algorithm based on whale optimization algorithm (WOA). In the AVMD, the WOA is used to 
optimizes the parameters of the VMD. After AVMD decomposition, the correlated kurtosis of the mode components obtained by 
AVMD decomposition is calculated. Then the mode components with the maximum correlated kurtosis are selected to carry out 
envelope analysis. Finally, the compound fault feature can be found from the envelope spectrum to get the diagnosis results. In 
order to test the validity of the proposed method, a compound fault experiment is implemented in a gearbox. Through the analysis 
of the experimental data, it is proved that the method shows a good performance in the compound fault detection of gearbox.

Keywords:	 compound fault; gearbox; time synchronous resample; adaptive variational mode decomposition.

Wykrywanie złożonych błędów przekładni stanowi trudne zagadnienie ze względu na ich skomplikowany charakter i powiązania 
wewnętrzne. W pracy zaproponowano nowatorską metodę wykrywania błędów złożonych opartą na synchronicznym próbkowa-
niu wtórnym (TSR) oraz adaptacyjnej metodzie wariacyjnej dekompozycji modalnej (AVMD). TSR pozwala wzmacniać sygnały 
błędów występujących w synchronicznych przekładniach walcowych, dzięki eliminacji składowych sygnału niezwiązanych z dzia-
łaniem wału synchronicznego. Dlatego też w przedstawionych badaniach, TSR wykorzystano do wyodrębnienia sygnału wału syn-
chronicznego odpowiadającego błędowi przekładni, z surowego sygnału błędu złożonego. Następnie wszystkie sygnały błędu wału 
synchronicznego poddano dekompozycji za pomocą AVMD, dzięki czemu otrzymano szereg składowych modalnych. Wariacyjna 
dekompozycja modalna (VMD) pozwala uniknąć problemu aliasingu, który występuje w przypadku empirycznej dekompozycji 
modalnej (EMD), przy czym efekt dekompozycji zależy od ustawień parametrów. Dlatego w artykule zaproponowano adaptacyjny 
algorytm VMD oparty na algorytmie optymalizacji wielorybów (WOA), który optymalizuje parametry VMD. Następnym krokiem 
po dekompozycji AVMD, było obliczenie skorelowanej kurtozy składowych modalnych otrzymanych na drodze tej dekompozycji. 
Składniki modalne o najwyższych wartościach skorelowanej kurtozy wykorzystano do przeprowadzenia analizy obwiedni. Błąd 
złożony wykrywano na podstawie widma obwiedni. Skuteczność proponowanej metody sprawdzono przeprowadzając doświadcze-
nie na przekładni, w której występował błąd złożony. Wyniki eksperymentu pokazują, że proponowane podejście stanowi skuteczną 
metodę wykrywania złożonych błędów.

Słowa kluczowe:	 błąd złożony; przekładnia; synchroniczne próbkowanie wtórne; adaptacyjna metoda waria-
cyjnej dekompozycji modalnej.

1. Introduction

Gearboxes are vital elements that are extensively used in auto-
mobile, aeroplanes and energy equipment. The gearboxes fault ac-
count for 80% in the shutdown malfunction of the transmission 
machinery[20, 22]. Therefore, it is essential to carry out gearbox fault 
diagnosis to prevent the gearbox from malfunction and reduce the 
economic loss[27]. Due to the long running time and poor working 
conditions, the faults of gearbox often occur in the form of compound 
fault simultaneously. Compound fault of gearbox may cause more se-
rious consequences or unnecessary economic losses in maintenance 
activities. Thus, it is essential to develop the study on compound fault 
detection technology of gearbox. At present, the compound fault vi-

bration signals collected from gearbox usually have the following 
characteristics: (a) In the original signal collected from the gearbox, 
the fault component belongs to the weak signal buried in the strong 
signal such as gear meshing component and noise; (b) Various faults 
may exist at the same time and interfere with each other. This causes 
the fault signal to be more complex and non-stationary[4]. Therefore, 
the above characteristics make it inconvenient to diagnose the com-
pound fault of gearboxes.

At present, many technologies have been introduced to compound 
fault diagnosis of gearbox. Guo et al.[6] put forward the gear vibra-
tion model for the planetary gear compound fault detection. Neverthe-
less, owing to the non-linearity, non-stationarity and complexity of 
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the compound fault signal and the complexity of the internal structure 
of the gearbox, it is laborious to raise an available model for com-
pound fault detection. Blind Source Separation (BSS) algorithm has 
been applied to compound fault diagnosis of rotating machinery[7, 
15], but the high requirement for raw signals limits the application 
of BSS algorithm. The sparse decomposition[31], spectral kurtosis[1] 
and morphological component analysis[30, 3] have also been intro-
duced for compound fault detection of gearbox and have shown good 
performance. Wavelet transform (WT) is a commonly used and effec-
tive time-frequency analysis method. So many scholars have been put 
forward some compound fault diagnosis methods of gearbox based 
on WT. Purushotham et al.[19] proposed a compound fault means 
for rolling bearing based on WT. Similarly, many improved wavelet 
transforms have been proposed and introduced for compound fault 
detection, such as multiwavelet transform[13, 8], multiwavelet packet 
transform[25, 11], dual-tree complex wavelet transform[21, 26, 28] 
and empirical wavelet transform[5, 12]. However, the selection of 
wavelet basis function will determine the performance of WT, which 
is also a major disadvantage of WT. As an adaptive time-frequency 
analysis method, empirical mode decomposition[10] (EMD) can 
adaptively decompose the signal into a certain number intrinsic mode 
functions satisfying certain conditions. EMD is suitable for processing 
nonlinear and non-stationary signals because of its self adaptability. 
For this reason, EMD is introduced into the analysis of gearbox mixed 
fault signal, which have shown good performance[9]. But the EMD 
has the disadvantage of mode aliasing, which will affect the effect 
of compound fault feature extraction. The ensemble empirical mode 
decomposition (EEMD) is an improved signal analysis method based 
on EMD, which can alleviate the disadvantages of modal aliasing in 
EMD[29]. Sandip et al.[23] have put forward a compound fault de-
tection approach based on EEMD and Convolution Neural Networks 
(CNN)[33]. It is found that there is still a certain degree of modal 
aliasing in EEMD and the method is sensitive to the noise existing in 
the signal[18]. The local mean decomposition (LMD) was proposed 
by Jonathan S. Smith and has been used to analyze electroencephalo-
gram signal[24]. Jiao et al. carried out multi-faults diagnosis of rotor 
system using LMD-based time-frequency representation. However, 
LMD still has a certain degree of mode aliasing, which affects the 
diagnostic results.

The variational mode decomposition (VMD) method is a 
novel adaptive signal processing method proposed by Konstantin 
Dragomiretskiy[32]. It can overcome some shortcomings of EMD, 
such as mode aliasing and endpoint effect. VMD is completely dif-
ferent from the recursive decomposition algorithm of EMD. Its over-
all framework is a constrained variational problem and has a solid 
theoretical foundation. The VMD suppose that each mode element 
is closely surrounded by a central frequency, and transforms deter-
mination of mode bandwidth into a constrained variational problem. 
Separation of mode elements is achieved by solving the constrained 
variational problem. VMD can segment the signal frequency domain 
flexibly and extract the latent feature information effectively. The 
number of mode components and penalty factors are two critical pa-
rameters of VMD, which can influence the performance of VMD in 
decomposition signal. The better decomposition results of VMD need 
appropriate parameters. Aiming at this problem, the paper proposes an 
adaptive variational mode decomposition (AVMD) algorithm based 
on whale optimization algorithm (WOA). WOA is a new intelligent 
optimization algorithm put forward by Mirjalili[17], which imitates 
the hunting strategy of humpback whales. The advantages of WOA al-
gorithm include less parameter settings and fast optimization speed.

In addition, the raw vibration signals collected from gearbox often 
contain noise and other interference signals besides fault signals[14]. 
Compared with other interference signals, fault signals belong to 
weak signals. Therefore, it is necessary to preprocess the original sig-
nal and enhance the fault signal. Time synchronous average (TSA)[2] 

is an effective technique in signal preprocessing for gearbox. TSA can 
enhance fault signals of synchronous shaft gears and their meshing 
gears by eliminating signal components independent of synchronous 
shaft, such as bearing vibration, motor vibration, gear meshing vi-
bration independent of synchronous shaft and vibration from other 
mechanical equipment[16]. However, TSA will filter out the bearing 
fault signal in gearbox, and the signal length will be greatly shortened 
after the average synchronization, so the algorithm has requirements 
on the signal length. Therefore, a signal preprocessing method based 
on TSR is presented in this work.

The remainder of this article is arranged as follows. The funda-
mental theory of the proposed method is elaborated in the Section 
2. In Section 3, the procedure of AVMD is presented. The flow chart 
of compound fault detection approach based on TSR-AVMD is illus-
trated in the Section 4. In Section 5, the performance of TSR-AVMD 
is validated by using compound fault experimental data of gearbox, 
and results are compared with other methods. The conclusions are 
given in the Section 6.

2. Materials and Methods 

2.1.	 Time synchronous resample

For continuous signal g(t), if it satisfies the Dirichlet condition, its 
Fourier transform is shown as follows:

	 X g t i t dt( ) ( )exp( )ω ω= −
−∞
+∞
∫ 	 (1)

Further assume that the signal is a limited bandwidth signal:

	 X fg( )ω ω π= >0 2 	 (2)

The sampling frequency band {z(p)} can be obtained by sampling 
the signal g(t) at the starting time tz with the sampling frequency fs > 
2fg:

	 z( ) ( ) , , ,p g P
f

t p p
s

z= − = ⋅ ⋅ ⋅ −0 1 1 	 (3)

where tz is the beginning time of sampling.

N data segments of R sampling points can be obtained through the 
same method:

	 x r g r
f

t r R n Nn
s

n( ) ( ) , , , , , ,= − = ⋅ ⋅ ⋅ − = ⋅ ⋅ ⋅ −0 1 1 0 1 1      (4)

where tn is the sampling beginning time of the nth sampling data seg-
ment, and N is called the average segment number. If it is assumed 
that the start times of these data segments correspond to the same 
signal flag, and these data segments are synchronized, then new data 
segments can be obtained on average for these data segments:

	 y r
N

x r r Rn
n

N
( ) ( ) , , ,= = ⋅ ⋅ ⋅ −

=

−
∑1 0 1 1

0

1
	 (5)

where y(r) is called time synchronized averaging signal, and the 
above procedure is called time synchronous average. But after TSA 
processing, the signal related to bearing fault will be filtered out, and 
the bearing fault in gearbox cannot be detected. In addition, the length 
of signal is greatly reduced after TSA processing, which affects the 
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subsequent analysis. For this reason, the input signal of TSA needs 
enough length, which limits the application of this technology. There-
fore, this paper only carries out synchronous resampling without aver-
age processing to overcome these shortcomings, which is called time 
synchronous resample.

2.2.	 Variational mode decomposition

The theory of VMD will be illustrated in this section. The intrinsic 
mode function in VMD refers to an amplitude modulation-frequency 
modulation signal, which is shown as follows:

	 u t A t tk k k( ) ( )cos( ( ))= ϕ 	 (6)

where Ak(t) indicates the signal amplitude, ϕk t( )  is the phase of the 

signal. ω ϕ
k t d t

dt
( ) ( )= stands for instantaneous frequency. The mode 

mentioned here is assumed to be a finite bandwidth component with a 
central frequency. The VMD is to seek the intrinsic mode function, 
which the sum of K estimation bandwidth is the smallest. The con-
straint condition is the sum of IMFs equal to the primary signal f (t). 
The specific measures to constructing constrained variational models 
are shown below:

Hilbert transform is performed for each IMF, as shown in the fol-
lowing formula:

	 δ
π
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



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 ∗ 	 (7)

For each IMF component, the corresponding center frequency ωk  
is estimated and multiplied with the exponent signal e j tk− ω , and the 
corresponding mode spectrum of each fundamental band is modu-
lated:
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The square of the norm of the gradient L2 above the modulation 
signal is calculated. The bandwidth of each IMF component is evalu-
ated. The following constraint variational model is constructed:
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where δ ( )t  is unit impulse function, j is imaginary unit, * indicates 
the convolution operation, t∂  indicates partial derivation of func-
tions, 1 2{ } { , , , }k Ku u u u= ⋅ ⋅ ⋅  indicates the decomposed K IMFs ele-
ments. { }={ , , , }k 1 2 Kω ω ω ω⋅ ⋅⋅  represents the central frequency of 
each IMF component.

To solve the problem of Eq (9), penalty factor α  and Lagrange 
multiplier λ  are introduced to transform the constrained variational 
problems into unconstrained ones. The augmented Lagrange expres-
sion is obtained in the following form:
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The alternate direction method of multipliers are used to itera-
tively update uk, ωk  and λ  to search the saddle point of augmented 
Lagrange expression. Specific implementation steps are shown as fol-
lows:

Initialize the (1)	 1 1 1ˆˆ{ },{ }, ,k ku nω λ  
Repeat cycle: (2)	 n=n+1
For all (3)	 0ω ≥ , update the ˆˆ , ,k ku ω λ  
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Repeat the (2) and (3) steps unless the iteration termination (4)	
condition is met.

	
221
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K
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End the iteration and get K IMFs components.

2.3.	 Theory of whale optimization algorithm

The whale optimization algorithm is an innovative intelligent 
optimization algorithm which is mainly formed by simulating the 
process of humpback whale’s predation. The predatory behavior of 
humpback whales can be summarized as the following three behav-
iors: randomly searching for prey, surrounding target prey and prey-
ing on target prey. In WOA, the position of each humpback whale is 
expressed as a feasible solution to the research problem.

2.3.1.	 Randomly searching for prey

Searching for a feasible solution to a problem can be modeled on 
the process of whale swarm randomly searching for target prey. The 
mathematical model is as follows:

1j rand+ = − ×X X A D (15)

rand j= × −D C X X (16)

where j is the current number of iterations, A and C are coefficient 
vectors, Xrand is the position vector randomly selected from the cur-
rent whale group, which is the possible solution.

The A and C in Eq. (15) and Eq. (16) can be obtained as follows:

12= × −A a r a (17)
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22=C r (18)
where a is a vector that falls linearly from 2 to 0, the r1 and r2 are 
random vectors in the range 0 to 1.

2.3.2.	 Surrounding target prey

The process of humpback whales approaching the target prey can 
be seen as the process of approaching the feasible solution in the algo-
rithm. If the target prey is the best individual location for the current 
population, the location will be updated as follows:

1j j+ = − ×X X A D (19)
*
j j= × −D C X X (20)

where Xj is the position vector of current whale, *
jX is currently the best 

whale position vector. 

2.3.3.	 Preying on target prey

Humpback whales prey on the target through the following two 
strategies:

Shrinking encircling mechanism: This mechanism is realized 1.	
by reducing the value of a, where a is a random value between 
[- 2, 2]; When a is in the range of [- 1,1], the position the 
whales are looking for is the position of the target prey. At 
this time, the whale group is close to the target prey, on the 
contrary, whales stay away from the prey. 
Spiral updating position: The humpback whales approach 2.	
their prey in a spiral motion. According to the motion mode, a 
mathematical model can be constructed as follows:

	 X D Xj
bl

je l+ = +1 2' *cos( )π 	 (21)

where ' *
j j= −D X X  is the distance between the current best position 

of the ith whale group and its prey, b is a constant for defining the shape 
of the logarithmic spiral, l is a random number in [-1, 1].

The above two mechanisms are carried out at the same time in 
the process of whale predation. In order to simulate this situation, a 
50% probability is selected between them to update the position of 
the whale group. It can be realized by the following mathematical 
model:

	 X
X A D

D Xj
j
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j
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− × <

+ ≥






1

0 5

2 0 5

.

cos( ) .' *π
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where p is a random number in [0, 1].

2.4.	 Adaptive variational mode decomposition

The procedure of AVMD is illustrated in this section. According to 
the description of VMD in the previous section, the number of com-
ponents K and the penalty factor α are two critical parameters that in-
fluence the decomposition effect of VMD. If the value of K is much 
smaller than the number of natural modes of the signal, all modes in the 
signal will not be separated completely. On the contrary, some modal 
components in the signal may be over decomposed and finally some 
non-existent modes will appear. The penalty factor α mainly affects the 
bandwidth of the mode components decomposed by VMD. If the pen-
alty factor is too small, the spectrum of component will be very wide, 
and the mode aliasing problem will occur easily. Conversely, the band-
width of the component is narrowed, and the information contained in 

the mode component may be insufficient. At present, the determina-
tion of the above two parameters mainly depends on human subjective 
experience, which may lead to unsatisfactory decomposition effect of 
VMD. Therefore, this paper proposes an AVMD, which employs the 
WOA to optimize the parameters of VMD.

A fitness function must be determined when using WOA to opti-
mize influence parameters of VMD. The fitness function values under 
different parameters are calculated, and the influence parameters are 
selected and updated by comparing fitness function values. The fit-
ness function is the maximum correlation kurtosis of modes received 
by VMD decomposition. Correlated kurtosis can detect the existence 
of periodic impact signals. In engineering practice, the original sig-
nal collected from the equipment contains some noise impact signals, 
which is not periodic. However, the traditional kurtosis can only re-
flect the impact characteristics of the signal. The traditional kurtosis 
may reflect only the impact signal of the noise rather than the fault 
impact signal. Therefore, the correlated kurtosis is used to select the 
IMF which contains fault impact component. The first order corre-
lated kurtosis can be computed as follows:
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where the y(t) is the vibration signal, τ  represents the sampling point 
length corresponding to the fault frequency to be detected. The M or-
ders correlated kurtosis can be get as follows:
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The first order correlation kurtosis is mainly suitable for detecting 
early faults, and high order correlation kurtosis is mainly suitable for 
detecting serious faults.

Fig. 1. Frame diagram of the AVMD
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The Fig. 1 is presented the flow path of AVMD. Firstly, the op-
timization range for parameters and WOA algorithm parameters are 
set, and then the whale groups locations (optimization parameters) are 
initialized. Then VMD decomposition is performed to get a series of 
mode components. Then the fitness function is calculated, and the op-
timal results are chosen by evaluating fitness function. Finally, output 
optimization parameters when the termination condition of WOA is 
satisfied, otherwise the parameters are updated to continue the above 
operation.

2.5.	 Compound fault diagnosis method based on TSR-AVMD

A compound fault detection approach based on TSR-AVMD is 
presented in this work. The process of the proposed approach is il-
lustrated in this section. The compound fault signals collected from 
gearbox include not only compound fault components, but also motor 
vibration signal, gear meshing vibration signal and vibration signal 
from other machinery and equipment. These irrelevant signals will 
affect the efficiency of compound fault diagnosis, so the TSR is intro-
duced to process the original signal in this paper. TSR can enhance the 
fault signal of synchronous shaft gear and its meshing by removing 
the frequency component independent of synchronous shaft, which 
makes it easy to detect the fault located in synchronous shaft gear. To 
get the fault features and overcome the limitations of traditional VMD 
methods, AVMD is put forward to extract gear fault characteristic. 
The flow chart of proposed method for hybrid fault detection is shown 
as Fig. 2. The specific steps are described as follows.

Collect the original signal from the gearbox through the vibra-(1)	
tion acceleration sensor.
The original vibration signal is preprocessed by TSR technol-(2)	
ogy, which enhances the synchronous shaft signal of each fault 
and eliminates the interference of the non-synchronous shaft 
signal component.
A series of mode components are obtained by decomposing the (3)	
synchronous shaft signals of all faults by AVMD.
Calculate the correlated kurtosis of the mode components ob-(4)	
tained by AVMD decomposition for all the fault synchronous 

shaft signals. Then the mode components with the maximum 
correlated kurtosis are selected for the next step.
Finally, the envelope analysis of mode components with maxi-(5)	
mum correlation kurtosis is performed, and the envelope spec-
trum is obtained to realize fault detection.

3. Experimental analysis

The performance of the proposed method is testified by using 
experiment signal of compound fault of gearbox in this section. The 
setup of the experiment is illustrated in the follows.

3.1.	 Experimental setup

The structure of the experimental platform is shown in the Fig. 3. 
The experimental data is collected by the acceleration sensor installed 
on the gearbox. The structure of the test gearbox and the specific lay-
out of four acceleration sensors are shown as Fig 4. In this experi-
ment, there are 1mm crack fault in Gear 1 and 2mm broken tooth fault 
in Gear 2 which is preset in the gearbox. The location of the gear 
fault is shown in the Fig. 5. In the experiment, the motor speed is set 
to 1200rpm and the load is set to 20nm. The sampling frequency of 
data is 20kHz.

3.2.	 Experimental result analysis

The experimental data of 1mm crack fault in Gear 1 and 2mm bro-
ken tooth fault in Gear 2 is employed to test the validity of proposed 
method. The wave form of raw compound fault signal is presented in 
the Fig 6. The rotational speed of input shaft is 2000rpm. According 
to the gear parameters shown in the Fig.4, the rotational frequency of 
output shaft and intermediate shaft is 2.43Hz and 10.94Hz respective-
ly. The two gears with crack fault and broken tooth fault are located 
in the output shaft and intermediate shaft respectively, so the corre-
sponding fault frequencies of the two faults are 2.43Hz and 10.94Hz 
respectively. 

The proposed approach is employed to perform the compound fault 
data. Firstly, the original data is preprocessed by TSR. The interfer-
ence of signal components independent of synchronous axis is elimi-

nated, and the synchronous shaft signals corresponding to crack 
fault and broken tooth fault are obtained respectively. Then the 
WOA is employed find the optimal parameters of VMD. The pa-
rameter settings of WOA are shown in the Table 1. Fig 7 shows 
the change curve of fitness function during the iteration of pa-
rameter optimization with WOA. As can be seen from the Fig 7 
(a), the fitness is stable when the number of iterations reaches 
7 generations, which shows that the optimal solution is found 
for broken tooth fault signal. Similarly, the optimal solution for 
crack fault is found when the number of iterations reaches 16 
generations as shown in the Fig 7 (b). Thus, the optimal param-
eters of VMD are found, and the result is presented in Table 2. 
VMD decomposition of synchronous shaft signal corresponding 
to crack fault and broken tooth fault is carried out respectively. 
The VMD decomposition result of synchronous shaft signal cor-
responding to broken tooth fault and crack fault is presented in 
the Fig 8 and Fig 9 respectively. Then the correlated kurtosis of 
all mode components is computed and the modes with maxi-
mum correlated kurtosis are chosen for envelope analysis. The 
IMF with maximum 15 orders correlated kurtosis for synchro-
nous shaft signal corresponding broken tooth fault is the second 
IMF, and the IMF with maximum 4 orders correlated kurtosis 
for synchronous shaft signal corresponding gear crack fault is 
the first IMF. The envelope spectrums of above two IMFs are 
obtained as presented in Fig 10.

Fig. 2. Procedure of proposed method for compound fault detection
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As shown in the Fig 10 (b), the prominent peak related to the fault 

Fig. 3. Structure diagram of test rig

Fig. 5. Location of compound fault in gears

Fig. 7.	 The iterative of process of optimization (a) iterative process for broken 
tooth fault signal (b) iterative process for crack fault signal

Fig. 9.	 Decomposition result of AVMD for synchronous shaft signal corre-
sponding gear crack fault

Fig. 11. Diagnosis results obtained by TSR-EMD (a) IMF of signal with broken 
tooth fault (c) IMF of signal with gear crack fault; (b) & (d) Envelop 
spectrum of (a) and (c)

Fig. 4. Gearbox structure and sensor position

Fig. 6. The wave form of raw signal

Fig. 8.	 Decomposition result of AVMD for synchronous shaft signal corre-
sponding broken tooth fault

Fig. 10.	 The diagnosis results obtained by proposed method (a) IMF of signal 
with broken tooth fault (c) IMF of signal with gear crack fault; (b) & 
(d) The envelop spectrum of (a) and (c)

Fig. 12. Diagnosis results obtained by TSR-EEMD (a) IMF of signal with broken 
tooth fault (c) IMF of signal with gear crack fault; (b) & (d) Envelop 
spectrum of (a) and (c)
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frequency of broken tooth (Fb) and its harmonics can be identified ev-
idently. As shown in the Fig 10 (d), the prominent peak corresponding 
to the fault characteristic frequency of crack (Fc) and its harmonics 
are evident clearly. In conclusion, the TSR-AVMD is able to separate 
the compound fault of broken tooth and gear crack in different shaft, 
and the corresponding fault can be detected effectively.

4. Discussion

In order to prove that the performance of TSR-AVMD is better 
than that of traditional methods, the EMD, EEMD and LMD are em-
ployed to perform the same data. Firstly, the compound fault signal is 
decomposed into a series of IMFs by using EMD, EEMD and LMD 
respectively. Then the IMFs with maximum 15 orders correlated kur-
tosis and maximum 4 orders correlated kurtosis are selected from the 
decomposition results. Finally, the selected IMFs which contains dif-
ferent gear fault are carried out envelope analysis and the envelope 
spectrums are shown in the Fig 11, Fig 12 and Fig 13. 

As for envelop spectrum shown in the Fig 11 (b), the peak related 
to Fb is identified clearly. Partial harmonics of Fb appear in envelope 
spectrum, but compared to Fig 10 (b), the harmonic of some Fb is an-
nihilated by other interference components. As for envelop spectrum 
presented in the Fig 11 (d), the prominent peak related to the Fc and 
its harmonics are identified, but not clearly. In the envelop spectrum, 
there are many interference components around Fc and its harmonics 
compared with Fig 10 (d). It shows that the performance of TSR-
AVMD is more competitive than the TSR-EMD. 

As shown in the Fig 12 (b), the peak related to Fb and its harmon-
ics are identified. But in the spectrum, there are some interference 
components around Fb and its harmonics compared with the Fig 10 
(b). In the Fig 12 (d), the peak related to Fc and its harmonics are iden-
tified clearly. It shows that the TSR-EEMD can detect the gear crack 
fault clearly. Nevertheless, the fault frequency of broken tooth cannot 
be extracted clearly enough, there are some interference components 
around Fb and its harmonics.

As for envelop spectrum shown in the Fig 13 (b), the peak related 
to Fb and its harmonics can be found, but there are disturbing com-
ponents near the harmonics. It can be seen from the Fig 13 (d), the 

peak related to Fc and its harmonics are disturbed seriously. It shows 
that the TSR-LMD can detect the broken tooth fault, and the perform-
ance of TSR-AVMD is more competitive than the TSR-LMD. But the 
TSR-LMD cannot detect the gear crack fault effectively.

In conclusion, the performance of TSR-AVMD in compound fault 
detection is more competitive than the TSR-EMD, TSR-EEMD and 
TSR-LMD. 

To prove the necessity of TSR in the presented approach, the 
AVMD is employed alone to analyze the raw signals that are not proc-
essed by TSR. Then the envelop spectrums of IMFs with 15 orders 
maximum correlated kurtosis and 4 orders maximum correlated kur-
tosis are shown as Fig 14. As shown in the Fig 14 (b), the prominent 
peak related to the fault frequency of broken tooth (Fb) and its har-
monics are clearly identified. However, the prominent peak related to 
the characteristic frequency of crack (Fc) and its harmonics cannot 
be found in the Fig 14 (d) clearly. Thus, the gear broken tooth fault 
can be detected and the gear crack fault cannot be detected. In sum-
mary, it shows that the gear crack fault cannot be detected by only 
using AVMD, and it proves the necessity of the TSR in the proposed 
method.

5. Conclusions

An innovative compound fault detection approach based on TSR 
and AVMD is presented in this paper. In the implementation of the 
presented approach, the TSR is used to preprocess the raw signal 
to eliminate the interference of asynchronous shaft signal. Then the 
AVMD is employed to process the fault synchronous shaft signals ob-
tained by TSR to extract fault features. The AVMD introduces WOA 
to optimize the main parameters of VMD, which overcomes the prob-
lem that the decomposition effect of VMD is affected by parameters. 
Then the optimal mode components that represent the fault features of 
gears are selected based on the principle of the maximum correlated 
kurtosis. Finally, the compound fault features can be extracted from 
the envelop spectrum of the optimal mode components. The com-
pound fault experiment of gearbox is performed to test the validity of 
the TSR-AVMD. After the analysis and comparison of the experimen-
tal results, the following conclusions can be obtained.

Fig. 13.	 Diagnosis results obtained by TSR-LMD (a) IMF of signal with broken 
tooth fault (c) IMF of signal with gear crack fault; (b) & (d) Envelop 
spectrum of (a) and (c)

Table 2.	 Optimal parameters of VMD for different fault

K of VMD for broken tooth fault K of VMD for gear crack fault α of VMD for broken tooth fault α of VMD for gear crack fault

2 12 7248 9247

Table 1.	 Initial parameter settings of WOA

Number of 
search agents

Maximum genera-
tions

Number of parame-
ters to be optimized

Floor of param-
eter K

Toplimit of param-
eter K

Floor of param-
eter α

 Toplimit of param-
eter α

100 50 2 2 15 1000 10000

Fig. 14.	 Diagnosis results obtained only using AVMD (a) IMF of signal with 
broken tooth fault (c) IMF of signal with gear crack fault; (b) & (d) 
Envelop spectrum of (a) and (c)
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TSR is an available approach for extracting synchronous shaft (1)	
fault signals and eliminating other interference signals. The 
experimental results show that TSR can eliminate the inter-
ference of non-synchronous shaft signal and enhance the fault 
signal of gearbox.
AVMD can effectively overcome the shortcomings of mode (2)	
aliasing in EMD. Through comparative analysis of experimen-
tal results, it can be proved that the performance of extracting 

fault features by AVMD is more competitive than traditional 
time frequency analysis methods such as EMD, EEMD and 
LMD. 
Through the experiment of compound faults in gearbox, the (3)	
compound fault detection approach based on TSR and AVMD 
presented in this work can detect compound faults of gearbox 
effectively.
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